This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

The Preparation of 1,2-Te $_2$ E $_5$ (E = S, Se) from Tellurium Chloride Te $_2$ Cl $_2$ Jarkko J. Pietikäinen; Risto S. Laitinen

To cite this Article Pietikäinen, Jarkko J. and Laitinen, Risto S.(1997) 'The Preparation of 1,2-Te₂E₅ (E = S, Se) from Tellurium Chloride Te₂Cl₂', Phosphorus, Sulfur, and Silicon and the Related Elements, 124: 1, 2 453 — 456

To link to this Article: DOI: 10.1080/10426509708545657 URL: http://dx.doi.org/10.1080/10426509708545657

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE PREPARATION OF 1,2-Te₂E₅ (E = S, Se) FROM TELLURIUM CHLORIDE Te₂Cl₂

JARKKO J. PIETIKÄINEN, AND RISTO S. LAITINEN Dept. of Chemistry, University of Oulu, Linnanmaa, 90570 Oulu, Finland

A novel tellurium chloride Te₂Cl₂ has been prepared. It's application for the preparation of 1,2-Te₂Se₅ and 1,2-Te₂S₅ is described.

Keywords: tellurium chloride, tellurium chalcogen rings

INTRODUCTION

Several heterocyclic seven-membered selenium sulfides Se_nS_{7-n}, are known.^[1-7] The information on analogous Te_nE_{7-n}-rings, however, is sparse due to the instability of these compounds as well as lack of suitable tellurium-containing reagents.^[1,8]

In the solid state the Se_nS_{7-n}-rings are found in the chair-conformation with a fragment of four approximately coplanar atoms. In solvent they undergo facile pseudorotation similar to that deduced

for cycloheptasulfur S_7 .^[1,6,7] It is probable that the tellurium-containing Te_nE_{7-n} -rings are also fluxional.

EXPERIMENTAL

Te₂Cl₂ was prepared by the reaction between equimolar amounts of Li₂Te and TeCl₄ in toluene. Upon filtration and removal of the solvent the brownish yellow liquid Te₂Cl₂ was obtained.

1,2-Te₂E₅ (E = S, Se) were prepared by treating [Ti(C₅H₅)₂E₅] (E = S or Se) ^[10] with Te₂Cl₂ in CS₂ as described previously for 1,2-S₂Se₅. ^[2]

RESULTS AND DISCUSSION

Te₂Cl₂ gives one ¹²⁵Te NMR resonance at 1297.3 ppm, which indicates that the product is rather ClTeTeCl than Cl₂TeTe.

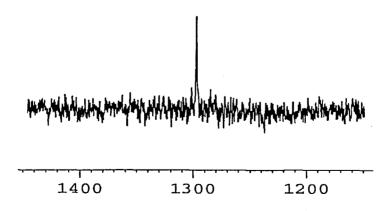


FIGURE 2 The ¹²⁵Te NMR spectrum of Te₂Cl₂.

The mass spectrum of Te_2Cl_2 exhibited the following fragments: m/z 328 ($Te_2Cl_2^+$), 291 ($Te_2Cl_2^+$), 270 ($TeCl_4^+$), 256 (Te_2^+), 244 (?), 223 (?), 200 ($TeCl_2^+$), 165 ($TeCl_2^+$), 128 (Te_2^+).

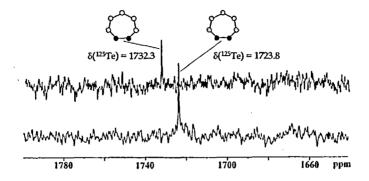


FIGURE 3 The ¹²⁵Te NMR spectra of 1,2-Te₂S₅ and 1,2-Te₂Se₅.

The ¹²⁵Te NMR resonances observed at 1732.3 and 1723.8 ppm are assigned to 1,2-Te₂S₅ and 1,2-Te₂Se₅, respectively. The ⁷⁷Se chemical shifts of 1,2-Te₂Se₅ are 1040.4, 1019.5 and 982.3 ppm (intensity ratio 2:1:2). These signals are consistent with the ⁷⁷Se resonances of 1,2-S₂Se₅. ^[3,6]

1,2-Te₂S₅ decomposes through a tellurium-atom transfer forming TeS₅ and 1,2,5-Te₃S₅ as main decomposition products. They are identified from the ¹²⁵Te NMR spectrum by application of the well-known relationship between the ⁷⁷Se and ¹²⁵Te chemical shifts ^[10] and taking into account the trends known for selenium sulfides. ^[11] The decomposition of 1,2-Te₂Se₅ seems to involve both the tellurium- and selenium-atom transfer. The definite assignment of the complicated

¹²⁵Te and ⁷⁷Se NMR spectra is currently in progress utilizing tellurium enriched in the ¹²⁵Te-isotope (enrichment 94 %).

Acknowledgment

Financial support from the Academy of Finland is gratefully acknowledged.

References

- [1.] R. S. Laitinen, P. Pekonen, and R. J. Suontamo, Coord. Chem. Rev., 130, 1, (1994).
- [2.] R. Steudel, M. Papavassiliou, E.-M. Strauss, and R. Laitinen, *Angew. Chem. Int. Ed. Engl.*, 25, 99, (1986).
- [3.] P. Pekonen, Y. Hiltunen, R. S. Laitinen, and T. A. Pakkanen, *Inorg. Chem.*, **30**, 3679, (1991).
- [4.] R. Steudel, and D. Jensen, Polyhedron, 9, 1199, (1990).
- [5.] P. Pekonen, R. S. Laitinen, and Y. Hiltunen, J. Chem. Soc. Dalton Trans., 2885, (1992).
- [6.] P. Pekonen, Y. Hiltunen, R. S. Laitinen, and T. A. Pakkanen, *Inorg. Chem.*, 29, 2771, (1990).
- [7.] R. Steudel, M. Papavassiliou, and D. Jensen, Z. Naturforsch., 43b, 245, (1988).
- [8.] K. Nagara, H. Hayashi, and Y. Miyamoto, *Fukuoka Unov. Sci. Rep.*, **18**, 35, (1988).
- [9.] A. Shaver, and J. M. McCall, Organometallics, 3, 1823, (1984).
- [10.] H.C.E. MacFarlane and W. McFarlane, J. Chem. Soc., Dalton Trans., 2416 (1973).
- [11.] R.S. Laitinen and T.A. Pakkanen, *Inorg. Chem.*, 26, 2598 (1987).